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The growth and branching of sharp cracks in ideal single crystals are investigated. Neuber-Novozhilov force and deformation 
criteria are proposed for the branching of sharp cracks; these criteria describe the brittle, quasibrittle, quasiductile and ductile 
behaviour of materials on fracture. For internal cracks, simple relations are obtained that describe the branching of cracks when 
the Coulomb-Mohr single-crystal theoretical strength curves are known for a generalized stress state. The possibility of multiple 
branching of cracks is found, which is linked to the multiplicity of the eigenvalues on loss of stability of the system. It is established 
that, for ideal single crystals, the principle of local symmetry is satisfied in the vicinity of the crack tip if the axis of symmetry of 
the crystal coincides with the axis of the crack. When there are asymmetrical disturbances of the atomic lattice in the vicinity of 
the crack tip, or when the axis of symmetry of the single crystal does not coincide with the crack axis, the principle of local symmetry 
is not satisfied. © 2004 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The problem of the stable growth of sharp cracks (or their branching) for certain types of loading of 
a body with a rectilinear sharp crack is of undoubted interest. In the vicinity of the tip of a normal- 
cleavage sharp crack, a complex stress-strain state (SSS) arises. Under certain conditions, blunting of 
sharp cracks may occur due to the large shear stresses and strains. There is still no definite answer to 
the question as to whether a sharp cleavage crack is stable in an ideal Bravais crystal lattice on account 
of the presence of shear stresses or shear strains in the vicinity of the crack tip, and how this stability 
is related to the ideal tensile and shear strength of the single crystal or the limiting deformability of 
the crystal lattice under shear. 

Kelly, Tyson and Cottrell [1-3] presented a condition of stability for a cleavage crack in the 
form 

~tmax/fflmx < ~,~/ff m (1.1) 

where "E 1 and (YI are the shear and tensile stresses arising in the vicinity of the tip of the normal-cleavage 
crack, and 'I; m and (Ym are the theoretical (ideal) shear and tensile strengths of the single crystal [4]. 
Qualitative considerations reduced to the following [1]: an interatomic bond at the tip of a sharp crack 
should be extended almost to its critical state, but then, in the vicinity of the crack tip, these tensile 
stresses will be transformed (possibly only partially) into high shear stresses, and, since the theoretical 
tensile strength ~m is greater than the theoretical shear strength gin, condition (1.1) arises, superimposed 
on the blunting of the crack. This condition is a typical force criterion. 

Rice and Thomson [2, 3, 5] proposed a different condition of stability for a cleavage crack in the 
form of an approximate relation if the real geometry of the atomic lattice is ignored 

Gbl  T ~ 10 (1.2) 

where G is the shear modulus, b is the Burgers vector of dislocation and 7 is the surface energy of 
the material. Criterion (1.2) was obtained from the classic concepts of solid-state physics [5]: a crack 
that is sharp at the atomic level is blunted due to dislocation emission from the crack tip. Unlike force 
criterion (1.1), criterion (1.2) is the deformation criterion. We emphasize that the blunting of cracks 
according to these criteria can occur, generally speaking, at different points with respect to the crack 
tip. 
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Fig. 1 

2. THE S T R E S S - S T R A I N  STATE IN THE V I C I N I T Y  OF 
THE CRACK TIP 

In an isotropic material, we will consider an internal crack that is sharp at the atomic level. An internal 
rectilinear crack is modelled by a two-sided cut of length 2/. For a normal-cleavage crack, let the stresses 
be specified at infinity, o=. We will examine the stability of the growth of sharp cracks, understanding 
this problem to be their branching. 

The continuous curve in Fig. 1 represents the right-hand tip of such a crack in the first quadrant, 
and the dashed line shows the expected new position of the crack during branching, where _+0" represents 
the angle of branching for a crystal symmetrical about the crack, and points O and O1 correspond to 
the old and new positions of the crack tips for an elementary act of crack propagation. Below, this 
constraint, requiring the presence of a certain symmetry of the crystal in relation to the crack/cut, will 
be removed. 

When 0* = 0, the crack propagates in a stable manner, remaining rectilinear, when _+0" ~ 0 it will 
branch, changing its direction, and here, when 0* = +_n/2, blunting of the crack occurs as it opens. In 
brittle fracture of the material [1-3, 5], the cleavage crack propagates rectilinearly, i.e. 0* = 0. In the 
case of ductile fracture of the material [1-3, 5], two dislocations are emitted from the crack tip, since 
O* = +_n/2. Below it will be shown that both quasibrittle (0" -_- _0) and quasiductile (0" ~ +_n/2) behaviour 
of the material is possible when _+0" ~ 0, 0* < n/2. We emphasize that no constraints, apart from 
symmetry, are imposed in advance on the behaviour of the system (unlike existing approaches [1, 2]). 
Therefore, generally speaking, regimes are possible where multiple branching occurs when, for example, 
0~1 ~ 0~2 ;~ 0~3 (the subscripts correspond to the number of the material and the type of loading). The 
multiple branching is related both to the complexity of the SSS in the vicinity of the crack tip and to 
the strength characteristics of the isotropic material with a complex stress state. 

In describing the branching of cracks, it is necessary to have information on the stress field in the 
polar coordinate system OrO for the force criterion, while for the deformation criterion, when describing 
the blunting of cracks, it is necessary to know the displacement of the sides of the crack in the rectangular 
system of coordinates Oxy in the vicinity of the crack tip. The SSS and the displacements of the crack 
sides in the vicinity of the right-hand tip of the normal-cleavage crack can be written in the form [6, 
pp. 15-171 

KI 3 0 
Co(r, O) - 2 ~ c o s  ~ + O(r O) 

Kt . 0 20 
Xro(r, 0) = sin-cos - + O(r°), 

24T~r 2 2 
K 1 = O** ,~ l  

(2.1) 

~c + 1 ~ l x l  2o(x, O) = 7 K I . [ ~ _ _  + O(x), x <- 0 (2.2) 

where o0(r, 0) and Zro(r, 0) are the normal and shear stresses, KI is the stress intensity factor (SIF), 
2ag(x, 0) is the opening of the crack surfaces, G is the shear modulus, and n = 3 - 4v for plane strain 
and ~¢ = (3 - v)/(1 + v) for a plane stress state, where v is Poisson's ratio. According to known 
recommendations [7], for crystals it is more convenient to study plane strain. The stress field [see relation 
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(2.1) and Fig. 1] was determined inside the single crystal [cf. relation (1.1)], while the opening of the 
crack surfaces [see relation (2.2) and Fig. 1] was determined outside the single crystal [cf. relation (1.2)]. 

We will investigate the brittle-ductile transition during the fracture of single crystals for fairly long 
cracks, more precisely, for cracks of length 2 / >  20re, where r e is the atomic lattice constant. Under  
such constraints, relations (2.1) and (2.2) can be simplified: terms O(r °) are omitted in relation (2.1), 
and terms O(x) are omitted in relation (2.2). Below, the Neuber-Novozhilov approach will be used for 
materials with a structure, and the atomic lattice constant r e is selected as the characteristic linear size 
of the isotropic single crystal. The interval of averaging when this approach is used for an ideal single 
crystal is equal to re or 2r e and coincides with the length of the segment OO1 in Fig. 1. 

3. F O R C E  A N D  D E F O R M A T I O N  C R I T E R I A  

When there is a gradual increase in the stresses 0.=, we have proportional loading with a complex stress 
state in the vicinity of the crack tip. Branching of the crack is possible [8-10] or the emission of 
dislocations [11]. The selection by the system of a particular branching path is related to the strength 
characteristics of the material. 

Figure 2 shows the Coulomb-Mohr  single crystal theoretical strength curves [12] for two different 
materials and shows the loading path. The following notation is used: 0. and z are the normal and shear 
stresses on the examined area in a complex stress state when the axis of symmetry of the crystal coincides 
with the cut; curves 1 and 2 are curves of the theoretical strength of single crystals symmetrical about 
the crack, such that 0.m = 0.ml = 0.m2 are the theoretical (ideal) tensile strengths of the single crystals 
[4], and "lTml :¢ "17m2 are the theoretical (ideal) shear strengths of the single crystals [4] (if the theoretical 
tensile strengths of the materials are the same, the theoretical shear strengths of the materials differ 
considerably); the arrow 3 shows the proportional path of loading; 0.(1) and ~(1) are the normal and shear 
stresses on the examined area in a complex stress state when none of the axes of symmetry of the crystal 
coincides with the cut; a is the angle between the axis of symmetry of the crystal and the cut. The path 
of loading 3 is characterized by the following relation: * * = * * = = 0.13/'~13 O"23/'1723 C 3 const (the notation 0.* 
and ~* is used for stresses of critical states, with subscripts corresponding to the number of the material 
and the type of loading); besides the constant C3, the loading path can be specified by the angle q0. This 
constant C3 or the angle q0 defines the type of loading, and the type of loading does not depend on the 
strength characteristics of the materials. 

The force criterion. Let a single crystal containing a crack be symmetrical about the crack and have 
no defects, for example, vacancies. We will examine the force discrete-integral brittle strength criterion 
[8-10] of the Neuber-Novozhilov type for crack growth in selected directions ___0, defined by the angles 
of branching (see Fig. 1) 
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(60(0) )  ~ 6* ,  ('l;rO(0)) ~ '[* 

?It e nt'¢ 

(60(0)) = nr--'~el ~ Oo(r ' O)ar, (~rO(0)) = nr---~el f ,Cro(r ' 0)dr; 
0 0 

n = l , 2  
(3.1) 

where (o0(0)) and (xr0(0)) are the averaged normal and shear stresses in the selected directions ---0 in 
an ideal single crystal. When (6e(0)) < o* and (Xr0(0)) < X*, the crack does not propagate (there is no 
branching). When the averaged stresses (o0(0)) and (Xr0(0)) are identical with the stresses of the critical 
state o* and x*, criterion (3.1) is satisfied: in the selected directions ---0", (a) a rectilinear crack 
propagates by the averaging interval if 0* = 0 (there is no branching), and (b) branching of an internal 
crack of length 2/occurs if 0* ~ 0, and the crack tip is displaced from point O quasistatically to point 
O1 and a point symmetrical to it (see Fig. 1). When crack propagation occurs at 0* = 0, criterion (3.1) 
is applied repeatedly to a rectilinear crack of length 2 ( /+  nre) to assess the possibility of the branching 
of a new crack. When branching occurs at 0* ~ 0, it is necessary to refine the SSS for a crack with a 
complex break (see, for example, the reference book [6] and the paper [13], and also the bibliography 
in them), and then to repeat the procedure in order to assess the possibility of crack branching with 
breaks. However, when 0* ¢ 0, for a crack with a complex break, the SSS is complicated considerably, 
since, besides the first mode, a second mode of deformation appears. 

We will assess the type of stress state in the vicinity of the crack tip as a function of the angle 0 
(-n < 0 < n). Figure 3 shows the distribution of the stresses o0 and zr0 in accordance with the simplified 
formulae (2.1) when terms O(r °) are omitted. All quantities relate to K1/2"~o~o, where r0 = const, 
i.e. g0 = oo/[Ki/2~o] and xr0 = xrol[K1/2"f~ro]. For a certain angle 0, the following relation is satisfied 

Xro(r, O)/6o(r, O) = (Xro(O))/(6o(O)) = tg(0/2) (3.2) 

Thus, as the crack 0 = 0 propagates, pure elongation 60 * 0, "CrO = 0 is realized; in the immediate 
vicinity of the sides of the crack, when 0 ~ ---n, in the vacinity of the crack tip a preferentially shear 
form of the SSS is realized; at arbitrary angles -rt < 0 < rt, a generalized stress state 60 ~ 0, "~r0 ¢ 0 
OCCURS. 

Suppose a certain crystalline material is specified, the SSS of which, after averaging, is described quite 
well by the equations of isotropic elasticity theory [see (2.1) and (2.2)]. When the axis of symmetry of 
the crystal coincides with the cut, the limiting curve of the strength of a single crystal of the Coulomb-Mohr 
type in the plane ~-~ is described by the function p(cp) = p(-cp) = f(q~) = f(-q~) (see Fig. 2 and [12]), 
which may be related to the principle of local symmetry [14]. Then the theoretical tensile and shear 
strengths of the single crystal are respectively equal to 6m = f(0) and z,, = f(rc/2), and the stresses of 
the critical states are defined as follows: 

6"  = f(¢p)costp, X* = f(~p)sin~0; x*16* = tgcp (3.3) 
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Comparing relations (3.2) and (3.3), we obtain q0 = 0/2: when q0 = 0/2 = 0 we have elongation, and 
when q0 = 0/2 = n/2 we have shear. Thus, it is very easy to switch from the type of loading in the vicinity 
of the crack tip to the type of loading in the o-'~ plane. 

The necessary transformations are carried out in relations (3.1) to (3.3) when, in equalities (2.1), 
terms O(r °) are omitted. Note that the use of the first or second relations from (2.1) and (3.3) under 
proportional loading leads to identical results [8-10]. The equations describing the branching of internal 
cracks have the form 

2l(0) _ nf2(0/2)4 ' 0 <_ 0 _< n; 21(qO - nf2(q°)4 ' 0 __ ~O _< 2n (3.4) 
re o~cos (0/2) re O~cos q0 

We will present qualitative reasoning explaining the functional relations (3.4) for fairly smooth 
functions f(q0) (there are no discontinuities of the first kind). Remember that, when q0 = 0, pure 
elongation occurs and f(0) = (Ym > 0, while, when q0 = n/2, pure shear occurs andf(n/2) = "c,~ > 0 (see 
Fig. 2). It is obvious that l(0) > 0 and l(q0) -~ oo when q0 ~ n/2, and here l'(q0) > 0 when q0 ~ n/2. We 
will make use of results given in [4]. The relative estimates of the theoretical tensile strength Om and 
shear strength Xm in limiting cases are alike [4]: (1) for crystals prone to cleavage, °m > "Cm; (2) for crystals 
with low resistance to the emission of dislocations, gm > "Cm" We will estimate the number of extrema 
of the function l(~0) in the interval (-n/2, n/2). For the first case, when l(q0) -- const we have a minimum 
at the point q0* = 0, i.e. the crack propagates rectilinearly. For the second case (Ym ~ "Cm, an angle _+q0* 
will appear at which l'(_+q0*) = 0, and three relations are possible: (2.1) l(0) < l(_+q0*) (the crack 
propagates rectilinearly); (2.2) l(0) = l(_+ q0*) (triple branching of the crack); (2.3) l(0) > l(_+ q0*) (double 
branching of the crack). 

The functional dependences (3.4) of the critical lengths of cracks 2l/re on the branching angle 0 or 
the type of stress state q0 are presented in Fig. 4. Three curves are given, characterizing the branching 
of cracks in different materials at a prescribed loading level o=: curve 1 describes the behaviour of the 
first material, for which 0~1 -- 0; curve 2 describes the behaviour of the second material, for which 
0~l = O, -I-0~2 :g: 0; and curve 3 describes the behaviour of the third material, for which +031 ~ 0. The 
differences in the behaviour of the materials are related to the strength characteristicsj~(q~) of the first 
(i = 1), second (i = 2) and third (i = 3) materials. At a prescribed level of loading o= for the first, 
second and third materials, the critical lengths of cracks/~(0~'1) (no branching of the crack),/~(0~1 ) = 
l~(+0~2 ) = * • = /2(-022) (triple branching) and /~(+0~1 ) * * 13(-031 ) (double branching) are obtained 
respectively, and here, according to the force criterion, the critical lengths of the cracks for these materials 
are defined as l* = min li(O ) with i = 1, 2, 3; to these critical lengths/*there correspond the branching 
angles 0~1, 0"21, 0~2 and 0~a. The principle of local symmetry is satisfied [14]. Note that the appearance 
of a more complex behaviour of the materials, for example multiple cracking, is also possible. If the 
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first material behaves like a brittle material, since 0~' 1 = 0, the third material (___0~l ~ 0 and 031 < n/20) 
behaves like a quasibrittle material at 0~ 1 = 0, and like a quasiductile material at 0~ 1 = rt/2. It is difficult 
to classify the second material, when 0~1 = 0 and 032 ~- re/2. The transition from critical lengths of internal 
cracks/*to SIFs K~/= o = ' f - ~  (i = 1, 2, 3) is obvious. 

Experimental results [15] are consistent with the principle of local symmetry [14] and the above 
reasoning; for example, a micrograph of the tip of a branching crack during the multiple cracking of 
ceramics has been given ([15], Fig. 7). We recall that criterion (3.1) is related to loss of stability of the 
crystal lattice. For the first material there is no branching of the crack (a simple eigenvalue), while for 
the second material triple branching occurs [15] (a triple eigenvalue). Only for the first type of material 
does a rectilinear crack propagate stably, since it does not change its direction during quasistatic growth. 

We will now consider the interpretation of the stability condition (1.1). We will refine the left-hand side 
of this relation: we use relations (2.1), ignoring terms O(r°)in them. It is obvious that the stresses Go and 
~'r0 reach an extremum at 0a = 0 and 0~ = ___2 arcsin (l/x/3 ) respectively, i.e. at different points 0c, ¢ 0~ 
(see Fig. 3). In obtaining criterion (1.1), qualitative reasoning was given [1 ] in substantiating the transition 
from the stress field in the vicinity of the crack tip to the theoretical tensile and shear strength of the material. 

Thus, more general approaches have been proposed in investigating the problem of the branching 
of cracks when the limiting curve 9(-q0) = p(-q~) = f(q0) = f(-q0) of the strength of the material of the 
Coulomb-Mohr type is known [see (3.1) and (3.4)]. 

Deformation criterion. We will now consider the deformation criterion for ductile materials. Let a 
single crystal containing an internal crack be symmetrical about the crack and not have any defects, 
for example, vacancies. Under load, two dislocations can be emitted from the crack tip [5]. We will take 
into account the actual geometry of the atomic lattice in the vicinity of the crack tip [16] for the plane 
case. We will use the simplest Frenket-Kontorova model of dislocation [11 ]. This model is characterized 
by two geometrical parameters which will be used below: the distance between the two layers of atoms 
r* (this distance may not be the same as the atomic lattice constant re), and the critical displacement 
h m. Let + [~ be the angle between the normal to the plane of the crack and the planes along which the 
dislocations emerge (-7t/2 < [3 < n/2). A real crack, which is modelled by a two-sided cut, is formed in 
the following way: two atoms are removed along the crack line, it is assumed that atoms lying on the 
sides of the crack do not interact with each other. The supercritical states of systems after the emergence 
of two dislocations are given in Fig. 5 for the subcritical arrangement of atoms at points of the tetragonal 
lattice (a) and at points of the close-packed layer of atoms (b). In relation (2.2), the crack tip is chosen 
as the reference point, and the displacement of the sides of the crack is estimated at distance x = -r* 
cos l] from its tip [11] (terms O(x) in relation (2.2) are omitted). It is proposed to use a deformation 
criterion describing the symmetrical emission of two dislocations from the tip of an internal crack 

~: + 1.  ~ < 2hm , 
2 v(-r* cos l], 0) = y / ~ t 4  2r~ r _ cos~ KI = t ~ l  (3.5) 

where h m is the critical displacement in the atomic lattice with specific packing of the atoms such that, 
during deformation of the system, with geometrical and physical non-linearity, the theoretical shear 
strength "% is exceeded (see [11]). For critical displacement in a close-packed layer of atoms, estimates 
[8-10] h m -~ (0.3 . . . . .  0.4)r e were obtained, and the specific values of h m depend on the interatomic 
interaction potentials. 
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When ~(-r* cos [3, 0) < hm/cOs ~, no dislocations are emitted. Let the constraint (G0(0)) < or*, 
('c,.0(0)) < z* be satisfied for criterion (3.1). Then, if deformation criterion (3.5) is satisfied, when 
l)(-r* cos ~, 0) = hm/cOs [3, extremely effective blunting of the crack occurs on account of the emission 
of two dislocations (a double eigenvalue). For a blunt crack, Khristianovich's hypothesis on the finiteness 
of stresses at the crack tip [6] is satisfied. Materials in which the crack is blunted by the emission of 
dislocations are either ductile when [3 = 0 or quasiductile when [3 = 0. For the types of materials examined, 
from deformation criterion (3.5) for critical SIFs K~/* and critical crack lengths l**, the following simple 
relations hold 

gli (Y~ i 1, 2, 3 (3.6) 2h,n G / 2re l** - ** 
K** = c o s ~ : +  l~/r*cos[3' -----~~; = 

It is difficult to classify a material in the case of multiple cracking, when the force criterion (3.1) and 
the deformation criterion (3.5) are satisfied simultaneously. Given {G0(0)) = ~*, (zr0(0)) = z*, and 
v(-r* cos [3, 0) = hm/cos [3, it is open to question whether a material of this kind exists among practical 
materials in the form of ideal single crystals; however, if there are considerable perturbations of the 
atomic lattice ahead of the crack tip similar behaviour of the material is not ruled out (see below). The 
blunting of cracks at the atomic level was described in detail in [17, 18]. However, in [17] there are no 
simple expressions for the critical parameters K 7 .  and l?* [see relations (3.6)]. After the emission of 
dislocations, the material is damaged. Now, in a material with damage, it is simplest to examine a blunt 
crack [18, 19], or, more precisely, a notch with a radius of curvature at the tip. These radii of curvature 
for the systems shown in Fig. 5 are approximately R ~ 1.5 r e (a) and R = 1.5 ~/0.75 r e (b). 

The proposed deformation criterion (3.5) and its consequences (3.6) enable us to describe the loss 
of stability of the atomic lattice in the vicinity of the crack tip when dislocations are emitted, and 
the parameter of critical displacement in the atomic lattice h m introduced is similar physically to the 
energy parameter characterising the loss of stability of the atomic lattice [20]. This criterion is probably 
simpler than the criterion from [20]; this is partly due to the fact that, in criterion (3.5), a simpler 
Frenkel-Kontorova dislocation model [11] is used, rather than the Peierls model [20]. 

Comparing the critical crack lengths 1" and l** or the critical SIFs K~ and K~/* respectively according 
to the force criterion (3.1) and the deformation criterion (3.5), we will establish which of these criteria 
is realized during branching of the crack (i = 1, 2, 3): 

(1) if K/~ < Kt** and l* < 1"*, then branching of cracks occurs according to the force criterion without 
the emission of dislocations; 

(2) if K)~ > Kt~* and 11 '~ > l~*, then the emission of dislocations occurs according to the deformation 
criterion; 

(3) if K}~ = Kt~* and l* = l**, then both branching of the crack according to the force criterion and 
emission of dislocations according to the deformation criterion occur. 

4. B R E A K D O W N  OF THE P R I N C I P L E  OF L O C A L  SYMMETRY 

The principle of local symmetry proposed in [14], which has been widely used above, may break down 
if, instead of studying ideal Bravais lattices for single crystals, one considers more or less real crystals 
[16]. We will assume that: 

(1) besides the crack, the single crystal has defects of the vacancy, dislocation or impurity atom type, 
arranged arbitrarily with respect to the crack tip; 

(2) the axes of symmetry of the crack and ideal single crystal do not coincide. 

The influence o f  perturbations. Suppose edge dislocations are arranged at an arbitrary angle to the 
crack line in the vicinity of its tip. We will determine more precisely the arrangement of vacancies and 
impurity atoms. We will assume that a single crystal has atomic lattice defects in the form of a single 
vacancy or a single impurity atom and clusters of two vacancies or two impurity atoms in the immediate 
vicinity of the crack tip, and here the vacancies or impurity atoms, which cause the atomic lattice to 
lose its symmetry, are not positioned on the crack surfaces. For impurity atoms it is assumed that the 
values of the crystal lattice constants of the base material r e and the impurity r~ 1) are practically identical, 
i.e. re ~ r~. l~, and any significant difference is related to the interatomic interaction constants [1]. The 
force and deformation criteria will be written in a slightly different form 

(G0(0)) < O**, (Xr0(0)) < X**, C** = f*(q0)cosq0, X** = f*(q0)sin~0 (4.1) 
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v ( - r*  cos[3, 0) < h~/cos[~ (4.2) 

where ~** and ~* * are the stresses of the critical states of the material with defects, and h*m is the critical 
displacement in the atomic lattice with defects, for which loss of stability occurs. Due to the presence 
of defects, there is a change in the limiting curve p*(~p) = f*(cp) of the strength of the material of the 
Coulomb-Mohr type in the c -x  plane, and here, in the general case, p*(~p) ~ p*(--~p), this function p*(~p) 
possibly having discontinuities of the first kind. Thus, in the modified force criterion (4.1) and 
deformation criterion (4.2), the characteristics of the material change compared with the initial criteria 
(3.1) and (3.5) [see, for example, (3.6)]. 

It is comparatively easy to obtain estimates of the reduction in the strength of the initial material 
when the perturbations are related only to vacancies, and the limiting curve for the initial ideal single 
crystalf(q)) is known. The procedure for averaging is carried out taking into account the bonds that are 
really active [18], and we then have the estimates 

o * * = ( k l n ) o * ,  x** ~- (kin)x* (4.3) 

where k is the number of interatomic bonds acting in the averaging interval nre, and here, in the case 
in question, k > 1 and k < n < 4. The number of interatomic bonds k which appears depends on the 
angle 0, and the parameter kin characterises the damage to the material (for an ideal single crystal 
kin = 1). For material with impurity atoms it is necessary to plot a curve p*(~p) = f*(~p) of the strength 
of material of the Coulomb-Mohr  type; the loss of stability of atomic chains with impurity atoms was 
investigated in [19]. 

The principle of local symmetry [14] in the system with the defect considered: 
(1) is satisfied if the function f(0)* is even; 
(2) is violated when the function f(q~)* is not even. 
If considerable damage exists ahead of the crack tip, where the damage parameter kin is considerably 

less than unity [see Eq. (4.3)], and if there is no other damage, then a case where criteria (4.1) and 
(4.2) hold simultaneously can probably be realized; such material is difficult to classify. Crack propagation 
in brittle and quasibrittle materials when there are defects has been discussed in [21]. 

Mismatch of the axes of an ideal single crystal and a crack. We will assume that the axis of symmetry 
of an ideal single crystal is rotated by a certain angle ot ;~ 0 with respect to the cut (agreement must 
undoubtedly be reached regarding the sign of the shear stresses "t). In the new a x e s  13 "(1) - '17 (1) (see 
Fig. 2), let the limiting curve of the strength of the single crystal of the Coulomb-Mohr type be described 
by the function 9((P - ~) = f(~P - ~)- 

The force criterion (4.1) formally retains its form if the stresses of the critical states c**, x** are 
defined in the appropriate way, namely 

(G0(0)) < ~**, (Xr0(0)) < "~**, ~** = f ( c p -  ~)cos(~p- CX) 

X** = f(~p - a)sin(~p- o0 
(4.4) 

The functional dependence of the critical crack lengths 21(cp)/re differs from (3.4) by the presence of 
the angle tx ~ 0. 

The deformation criterion acquires the form 

+ 

o( - r*cos~  -+, 0) < hm/cos13- (4.5) 

since the angles between the normal to the crack plane and the planes in which the dislocations are 
emitted above and below the crack plane do not coincide in absolute magnitude, i.e. [3 + ~ [13-[. 

It is obvious that the local principle of symmetry [14] breaks down both for the force criterion (4.4) 
and for the deformation criterion (4.5), since f(~p - o 0 ~f(-~p + ~) and 13+ ~ [13-[. 

5. D I S C U S S I O N  

The growth and branching of sharp cracks both in ideal single crystals and in crystals with perturbations 
have been investigated. Force and deformation criteria have been plotted for these crystals. With 
successive additional loading of a body with a crack, a stress-strain state is produced such that either 
the force or the deformation criterion is satisfied (simultaneous satisfaction of these criteria is also 
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possible). In the vicinity of the crack tip, the atomic lattice of the material loses its stability. Competit ion 
between the brittle and quasibrittle behaviour of materials and the quasiductile and ductile behaviour 
occurs, which, generally speaking, is defined by the ratio (Ym/~m [1]. The latter ratio in practical structural 
materials can be changed by using metal  physics processes. The principle of  local symmetry [14] is 
satisfied for symmetrical systems and is violated for systems without symmetry. The compactness of the 
proposed exposition of the problem of branching (see [17, 20, 21]) is due to reinterpretation and 
formalization of the results from the neighbouring area of knowledge - solid-state physics (metal physics). 
In the exposition proposed,  use is made of: 1) not only the concept of the theoretical tensile and shear 
strength [4] but also the entire Coulomb-Molar  single crystal theoretical strength curve for the 
generalized stress state (see [8-10]); when defects of the single crystal are present in the vicinity of the 
crack tip, this curve can have discontinuities of the first kind; 2) another definition of the nucleus of 
dislocation (see [11]) where the critical displacement of the atoms in the Frenkel -Kontorova model 
corresponds to the theoretical shear strength of the crystal lattice. 

The atomic lattice can have multiple eigenstates. With multiple eigenstates the critical loads of the 
different states are the same, and multiple cracking of the material occurs. For certain crystal lattices, 
crowding of the critical loads of the eigenstates exists in the vicinity of the smallest critical load. When 
perturbations take effect, under multiple critical loads and with their crowding [22-25], large spreads 
are observed in full-scale experiments and certain difficulties arise in describing the supercritical 
behaviour of systems in a numerical experiment [25, 26]. 

The atomistics of fracture was discussed in [25, 26]. We emphasize that the first of these reviews [25] 
is devoted to a numerical experiment in micromechanics in the presence of defects. Occasionally, in 
numerical calculations [25] the principle of local symmetry [14] is violated in symmetrical systems due 
to roundings off in the calculations. The judicious application of the finite element method to the 
supercritical deformation of atomic lattices in the presence of perturbations has been demonstrated 
[27]. 

This research was supported financially by the Russian Foundation for Basic Research (01-01-00873) 
and Grant  NSh-319.2003.1 of the President of the Russian Federation. 
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